
Copyright © GrapeCity, inc. All rights reserved.

PdfViewer for WinRT XAML
A Document Viewer for Windows Store Apps

Add document viewing capabilities to your Windows Store apps. ComponentOne PdfViewer™ for

WinRT XAML can display simple PDF documents within your applications without requiring any external

application. Load arbitrary PDF documents with support for page zooming, printing and text searching.

Key Features
Load and View PDF Files
Load and view PDF files in your Windows Store apps using the C1PdfViewer control. This XAML control

has no external dependency on the desktop or anything from Adobe to view or save files. Content is

parsed and rendered as native WinRT XAML elements inside a native ListBox for smooth page

navigation.

Multi-touch Gesture Support
Users can drag the pages to scroll, as well as, pinch or double tap to zoom the document. Zooming can

better legibility for reading content on a small screen.

Horizontal Orientation
The C1PdfViewer control supports both Vertical and Horizontal orientation. Just set the Orientation

property.

Find Text
Users can perform text searches within the document. As matches are found they are brought into view,

and users can navigate through search results in a quick and intuitive manner.

Get Pages from PDF
After loading a PDF, you can obtain a list of its pages as FrameworkElements to customize how the user

views each page. This enables a lot more flexibility in working with existing PDF documents, for example

you can send the page images to a printer. Just call the GetPages method.

"Best Efforts" Rendering
The C1PdfViewer control will try its best to open and render any PDF. It supports a subset of the PDF 1.5

specification. Documents that contain unsupported content will still render, but the formatting may

Copyright © GrapeCity, inc. All rights reserved.

appear slightly off. When an unsupported font is encountered, the control will try its best to find the

closest supported font so the text will still render. It is recommended to use C1PdfViewer in a controlled

environment where the features used by your PDF files can be tested before being used. The full list of

limitations can be found in the documentation.

Encrypted File Support
The C1PdfViewer control supports viewing encrypted files. The LoadDocument method has an optional

password parameter to view encrypted files.

PdfViewer for WinRT XAML Quick Start
The following quick start guide is intended to get you up and running with PdfViewer for WinRT XAML.

In this quick start you'll start in Visual Studio and create a new project, add a PdfViewer for WinRT

XAML control to your application, and add content to the control.

Step 1 of 3: Adding C1PdfViewer to the Application
In this step you'll begin in Visual Studio to create a WinRT-style application using PdfViewer for WinRT

XAML. To set up your project and add a C1PdfViewer control to your application, complete the following

steps:

1. In Visual Studio 2012 Select File | New | Project.
2. In the New Project dialog box, expand a language in the left pane, under the language select
Windows Store, and in the templates list select Blank App (XAML). Enter a Name and click OK
to create your project.
3. Open MainPage.xaml if it isn't already open, place the cursor between the <Grid> and
</Grid> tags, and click once.
4. Add the following column and row definitions between the <Grid> and </Grid> tags:

<Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition/>

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>

 <ColumnDefinition/>

 <ColumnDefinition Width="Auto"/>

</Grid.ColumnDefinitions>

Elements in the grid will now appear positioned.
5. Navigate to the Toolbox and double-check the C1PdfViewer icon to add the control to your
application.
6. Edit the C1PdfViewer's markup so it appears similar to the following:
<PdfViewer:C1PdfViewer x:Name="pdfViewer" ViewMode="FitWidth" Grid.Row="1"
Grid.ColumnSpan="2"/>
This markup gives the control a name, sets the ViewMode of the control so that the entire
width of a PDF will be displayed in the control, and customizes the layout of the control.
7. Navigate to the Toolbox and double-click the StackPanel icon to add it to the page. Edit the
StackPanel's markup so it appears similar to the following:

<StackPanel Orientation="Horizontal" Margin="8" VerticalAlignment="Center" >

 <TextBlock Text="{Binding ElementName=pdfViewer, Path=PageNumber}" FontSize="20"

Foreground="{StaticResource ApplicationForegroundThemeBrush}" />

 <TextBlock Text=" / " Foreground="{StaticResource

ApplicationForegroundThemeBrush}" FontSize="20"/>

 <TextBlock Text="{Binding ElementName=pdfViewer, Path=PageCount}" FontSize="20"

Foreground="{StaticResource ApplicationForegroundThemeBrush}" />

</StackPanel>

http://helpcentral.componentone.com/nethelp/PdfViewerWinRT/XMLDocuments/PdfViewer/html/T_C1_Xaml_PdfViewer_C1PdfViewer.htm

Copyright © GrapeCity, inc. All rights reserved.

This markup adds three TextBlock controls in the StackPanel.
8. Add the following markup just below the StackPanel's closing tag icon to add a Button to the

page:
<Button x:Name="btnLoad" Grid.Column="1" Content=" Load Pdf... "

HorizontalAlignment="Right" VerticalAlignment="Top" Margin="8" Click="btnLoad_Click"

/>

Note that you'll add the Click event handler's code in the next step.
You've successfully created a WinRT-style application. In the next step you'll add code to the application
to view a PDF.

Step 2 of 3: Adding Code to the C1PdfViewer Application
In the previous step you created a new WinRT-style project and added a C1PDFViewer control to the
application. In this step you'll continue by adding a PDF document to the application, and code to display
the PDF file in the C1PdfViewer control.
Complete the following steps:

1. In the Solution Explorer, right-click the project name and select Add │ Existing Item.
2. In the Add Existing Item dialog box, locate a PDF file (for example the C1XapOptimizer.pdf
included with the samples) and click Add.
You can select any PDF file but will have to replace "C1XapOptimizer.pdf" with the name of your
PDF file in the code below.
3. Select the PDF file in the Solution Explorer, and in the Properties window set the file's Build
Action to Embedded Resource.
4. Select View | Code to switch to Code view.
5. In Code view, add the following import statements to the top of the page:

using System;

using System.IO;

using System.Reflection;

using Windows.Storage;

using Windows.Storage.Pickers;

using Windows.UI.Xaml.Controls;

6. Add code to the page's constructor so that it appears like the following:
public MainPage()

{

 this.InitializeComponent();

 Assembly asm = typeof(MainPage).GetTypeInfo().Assembly;

 Stream stream =

asm.GetManifestResourceStream("PdfViewerSamples.C1XapOptimizer.pdf");

 pdfViewer.LoadDocument(stream);

}

Note: You will need to replace "PdfViewerSamples" with the name of your project's

namespace.

7. Add the following btnLoad_Click event handler to the project:
private async void btnLoad_Click(object sender, Windows.UI.Xaml.RoutedEventArgs e)

{

 FileOpenPicker openPicker = new FileOpenPicker();

 openPicker.FileTypeFilter.Add(".pdf");

 StorageFile file = await openPicker.PickSingleFileAsync();

 if (file != null)

 {

 Stream stream = await file.OpenStreamForReadAsync();

 pdfViewer.LoadDocument(stream);

 }

Copyright © GrapeCity, inc. All rights reserved.

}

In this step you completed adding code to your application. In the next step you'll run the application
and observe run-time interactions.

Step 3 of 3: Running the C1PdfViewer Application
Now that you've created a WinRT-style application and customized the application's appearance and
behavior, the only thing left to do is run your application. To run your application and observe
PdfViewer for WinRT XAML's run-time behavior, complete the following steps:

1. From the Debug menu, select Start Debugging to view how your application will appear at
run time. Notice that a PDF file appears in the PDF width fitted to the viewer and page numbers
displayed in the upper left corner of the application.
2. Click the scroll bar to scroll through the document, and notice that you will scroll from one
page in the PDF file to the next.
3. Click the Load Pdf button, locate and select another PDF file, click Open, and notice that the
file loads into the C1PdfViewer control.

Congratulations! You've completed the PdfViewer for WinRT XAML quick start and created a PdfViewer
for WinRT XAML application, customized the C1PdfViewer control, and viewed some of the run-time
capabilities of your application.

PdfViewer Limitations
While PDFViewer for WinRT XAML aims to provide a full-featured PDF viewer, it supports a subset of

the PDF 1.5 standard and so, like most PDF viewers on the market, does have its limitations. These

limitations focus in three areas: encryption, fonts, and images.

Fonts
ComponentOne PdfViewer for WinRT XAML supports the following font types:

 Silverlight fonts: This includes all font families supported by Silverlight.

 PDF base fonts: This includes fonts built into Adobe Acrobat such as Helvetica, Times, and

Symbol.

The C1PdfViewer control does not support other font types available in the PDF specification, including

Adobe Type 1 fonts (specified using the "FontFile" mechanism in the PDF file) and embedded TrueType

fonts (specified using the "FontFile", "FontFile2", "FontFile3" mechanism in the PDF file).

The C1PdfViewer control also does not currently support right-to-left languages such as Arabic or

Hebrew.

Documents that use non-supported fonts will still render, but the formatting will be incorrect (for

example, the document may show overlapping text).

Images
ComponentOne PdfViewer for WinRT XAML supports most common image types, including all binary

stream formats supported by Silverlight as well as deflated streams of several types (RGB, Monochrome,

and several common indexed formats).

Copyright © GrapeCity, inc. All rights reserved.

The C1PdfViewer control does not support some rare formats such as deflated JPG streams, or

advanced features such as custom color spaces or halftones. C1PdfViewer does not support

DCTDecode/JPEG image encoding. Note that scanned PDF files may contain TIFF data which the

C1PdfViewer control is currently not capable of rendering.

Masks
The C1PdfViewer control does not support soft masks (specified using the "SMask" mechanism in the

PDF file).

